Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth?

نویسندگان

  • Nicholas P Illsley
  • Isabella Caniggia
  • Stacy Zamudio
چکیده

Insufficient oxygen leads to the cessation of growth in favor of cellular survival. Our unique model of high-altitude human pregnancy indicates that hypoxia-induced reductions in fetal growth occur at higher levels of oxygen than previously described. Fetal PO(2) is surprisingly high and fetal oxygen consumption unaffected by high altitude, whereas fetal glucose delivery and consumption decrease. Placental delivery of energy-generating substrates to the fetus is thus altered by mild hypoxia, resulting in maintained fetal oxygenation but a relative fetal hypoglycemia. Our data point to this altered mix of substrates as a potential initiating factor in reduced fetal growth, since oxygen delivery is adequate. These data support the existence, in the placenta, of metabolic reprogramming mechanisms, previously documented in tumor cells, whereby HIF-1 stimulates reductions in mitochondrial oxygen consumption at the cost of increased glucose consumption. Decreased oxygen consumption is not due to substrate (oxygen) limitation but rather results from active inhibition of mitochondrial oxygen utilization. We suggest that under hypoxic conditions, metabolic reprogramming in the placenta decreases mitochondrial oxygen consumption and increases anerobic glucose consumption, altering the mix of energy-generating substrates available for transfer to the fetus. Increased oxygen is available to support the fetus, but at the cost of less glucose availability, leading to a hypoglycemia-mediated decrease in fetal growth. Our data suggest that metabolic reprogramming may be an initiating step in the progression to more severe forms of fetal growth restriction and points to the placenta as the pivotal source of fetal programming in response to an adverse intrauterine environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of COVID-19 during pregnancy on fetal brain development

The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...

متن کامل

I-46: Obstetrical Doppler

Accurate assessment of gestational age, fetal growth, and the detection of fetal and placental abnormalities are major benefits of sonography. Color Doppler can be used to assist in the identification of vascular architecture, detection of vascular pathology and visualization of blood flow changes associated with physiologic processes and disease states. The clinical applications of obstetrical...

متن کامل

Regulation of Nutrient Transport across the Placenta

Abnormal fetal growth, both growth restriction and overgrowth, is associated with perinatal complications and an increased risk of metabolic and cardiovascular disease later in life. Fetal growth is dependent on nutrient availability, which in turn is related to the capacity of the placenta to transport these nutrients. The activity of a range of nutrient transporters has been reported to be de...

متن کامل

Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values

Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IU...

متن کامل

Ontogeny of fetal hepatic and placental growth and metabolism in sheep.

Ontogeny of fetal hepatic and placental growth and in vitro oxygen consumption (VO2) was investigated in fetal lambs at 75, 100, and 136 days postconception. Fetal hepatic relative weight and placental absolute and relative weights declined during this period. Oxygen consumption per gram dry weight of fetal liver and maternal placenta declined between mid and late gestation while fetal placenta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 54 2-3  شماره 

صفحات  -

تاریخ انتشار 2010